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tions of cascading gauge theories by performing a tree-level computation in their dual

gravitational background. We prove that these theories are holographically renormaliz-

able; the correlators have only analytic ultraviolet divergences, which may be removed by

appropriate local counterterms. We find that n-point correlation functions of properly nor-

malized operators have the expected scaling in the semi-classical gravity (large N) limit:

they scale as N2−n
eff with Neff ∝ ln(k/Λ) where k is a typical momentum. Our analysis

thus confirms the interpretation of the cascading gauge theories as renormalizable four-

dimensional quantum field theories with an effective number of degrees of freedom which

logarithmically increases with the energy.
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1. Introduction and summary

Cascading gauge theories were discovered in [1 – 3] (see [4, 5] for reviews) by looking at the

decoupling limit (the near-horizon limit) of fractional D3-branes at a conifold singularity.

Since then various other examples have also been studied, including [6 – 13]. These theories

are not standard local quantum field theories since they do not approach a conformal field

theory at high energies. Therefore, one cannot use standard field theory techniques to
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analyze them. When one introduces a finite high-energy cutoff at some scale M , then at

the cutoff scale these theories resemble an N = 1 supersymmetric SU(K) × SU(K + P )

gauge theory with two bifundamental and two anti-bifundamental chiral superfields and

some superpotential. When one flows down in energy from this cutoff one of the gauge

groups becomes strongly coupled and the theory seems to undergo a series of Seiberg

duality [14] “cascades”, reducing the value of K, and finally ending (when K is a multiple

of P ) with a confining theory at some low-energy scale Λ [3, 5, 15] (which is related to

the N = 1 supersymmetric pure SU(P ) Yang-Mills theory). However, the value of K

increases with the high-energy (UV) cutoff as K ∝ ln(M/Λ), so it seems that an increasing

number of degrees of freedom is needed to define the theory at higher energies, and that

the ultimate definition of the cascading theory requires a theory with an infinite number

of fields.

It is not known how to directly define a cascading gauge theory in field theory terms1.

The best available definition of the cascading gauge theory is via its holographic dual

background [1 – 3]. This background can be well-described by a semi-classical supergravity

theory when the dimensionless parameter of the cascading gauge theories, gsP (where gs is

the string coupling in the dual background), is large. However, the asymptotic region of this

background is actually well-described by supergravity for any value of this dimensionless

parameter, related to the fact that the effective ’t Hooft coupling constant, g2
Y MK, always

becomes large in these theories at high energies. Since the computations of short-distance

correlation functions that we will perform will be dominated by this asymptotic region, our

results will be valid (at short enough distances) for any value of gsP .

In the AdS/CFT correspondence [17 – 19] (see [20] for a review) properties of the

conformal field theory (CFT) may be computed using its holographic dual theory on anti-

de Sitter (AdS) space. In particular, many computations can be done when the supergravity

approximation is valid. The same is true also for the cascading gauge theories [21 – 24]. It

was shown in [23] that despite having an infinite number of high-energy degrees of freedom,

all one-point functions of the cascading gauge theory (including the conformal anomaly) are

finite after they are holographically renormalized. The consistency of this renormalization

procedure was tested in [25]. It can be used to compute the thermodynamic properties, such

as the pressure and the energy density, of the cascading gauge theory plasma, by evaluating

the one-point function of the stress-energy tensor. From these one can compute the speed

of sound in the theory. The same speed of sound is precisely reproduced from the dispersion

relation for the sound waves extracted from the pole in the stress-energy tensor two-point

correlation function, which can be evaluated without holographic renormalization.

In this paper we continue exploring the holographic definition of cascading gauge the-

ories. We compute the large-momentum limit of a specific contribution to the N -point

functions of operators dual to supergravity fields. We show that this contribution has

only analytic ultraviolet divergences (contact terms) and, therefore, it may be renormal-

ized with local counterterms. We demonstrate that holographic renormalizability of the

1It may be possible to define it by a limiting procedure, using an infinite-number-of-fields-limit of well-

defined theories which flow to the cascade at some energy scale, as in the construction of [16].
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N -point correlation functions in the cascading theories is directly linked to the renormal-

izability of the corresponding conformal field theories (which arise in the P → 0 limit).

For example, this implies that the renormalizability of the Klebanov-Strassler cascading

theory [2, 3] follows from the renormalizability of the Klebanov-Witten supersymmetric

CFT [26]. Moreover, we find that properly normalized cascading gauge theory operators

have the expected scaling of their N -point correlation functions. They behave as N2−N
eff

with Neff ∝ ln(k/Λ), where k is a typical momentum scale, as expected in the ’t Hooft large

Neff limit [27] of an SU(Neff ) gauge theory (or an SU(Neff )×SU(Neff +P ) gauge theory).

Our analysis confirms the interpretation of the cascading gauge theories as renormalizable

four-dimensional quantum field theories whose effective number of degrees of freedom log-

arithmically increases with the energy, as suggested also by their thermodynamic behavior

at high temperatures [28 – 30].

This paper is organized as follows. We begin in section 2 by outlining the computation

that we need to perform. In section 3 we compute the bulk-to-boundary propagator in

the cascading background, and use it to compute the two-point functions of the cascading

theories (some specific cases of two-point functions were previously computed in [21, 22]).

The main computation of the N -point correlation functions is performed in section 4, and

our main results appear in §4.2.4. Two appendices contain technical details.

Our analysis leaves some remaining open problems. First, we were only able to compute

the large-momentum limit of a specific class of correlation functions. It would be interesting

to find a way to generalize our computation to arbitrary correlation functions. It would

also be interesting to extend our results to finite values of the momentum. Such correlation

functions depend on the IR behavior of the cascading theory, which our large-momentum

computation is independent of. In particular, the computation of correlators at finite

momentum is necessary in order to compute the S-matrix of the cascading theories (through

an LSZ-type procedure), and without it we are not able to say how the S-matrix of these

theories behaves at high energies.

Second, we only discuss here correlation functions of the cascading gauge theory oper-

ators which are dual to ten dimensional supergravity modes2. It would be very interesting

to evaluate also the correlation functions of the operators dual to massive string modes,

and to verify whether or not they confirm the picture of the cascading theory as a renor-

malizable quantum field theory with Neff ∝ ln(k/Λ) effective degrees of freedom. Note

that this computation is complicated since the anomalous dimension of the corresponding

operators seems to grow as (g2
Y MNeff )1/4, which grows without bound as the energy is in-

creased. A first important step in this direction was made in [31] where it was shown that

the anomalous dimension of twist-2 operators in cascading gauge theories has the expected

dependence on Neff .

2. Generalities

We would like to study the high momentum correlation functions of cascading gauge theo-

2This includes in particular the operators dual to the specific Kaluza-Klein modes appearing in the

effective 5d supergravity description of the asymptotically cascading geometries, obtained in [23].
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ries. Specifically, we look at the cascading gauge theory of fractional D3-branes at a coni-

fold singularity, whose gravitational dual is asymptotically given by the Klebanov-Tseytlin

(KT) [2] solution of type IIB supergravity3

1

L2
ds2

10 = gµνdyµdyν +
√

hds2
T 1,1 =

1√
h

1

ρ2
dxi2 +

√
h

ρ2
dρ2 +

√
hds2

T 1,1 , (2.1)

where h(ρ) = 1
8P 2p0 + 1

4K0 − 1
2P 2p0 ln(ρ/ρ0) in the notation of [23], µ, ν = 0, 1, 2, 3, 4,

i = 0, 1, 2, 3, p0 is the string coupling and P is the number of fractional D3-branes. We

note that the details of this background (such as the T 1,1 metric) will not play any role

in our computations. These should be valid for any cascading gauge theory background

which has a similar logarithmic form of the warp factor h(ρ). In order to keep our discussion

general we will denote h(ρ) = a′ − b ln(ρ/ρ0). The AdS background is then a special case

of this with b = 0.

As usual, we will perform a Kaluza-Klein (KK) reduction of all the fields on the

compact space T 1,1. After this reduction we obtain an infinite set of five dimensional fields

φi(x, ρ), which are dual to operators Oi(x) in the dual field theory.

In the AdS/CFT correspondence [17 – 19] and its generalizations, one obtains the field

theory correlation functions 〈O1(x1) . . .ON (xN )〉 in the gravity approximation by varying

the gravity action with respect to the boundary value of the fields φi dual to Oi(xi). One

contribution to such a correlation function will come from an interaction vertex in the bulk

action (if it exists) of the form λNφ1 . . . φN .

A simple way to compute the correlation functions is to define a bulk-to-boundary

(BtB) propagator for the fields φi, denoted Ki(x, x′; ρ), which gives the change in the field

φi(x
′, ρ) in response to a (appropriately normalized) delta function source at the point x

on the boundary (ρ → 0). In section 3 we will review the form of these BtB propagators

in AdS space, and compute them for the cascading background.

If we have a vertex of the form λNφ1 · · · φN in the five dimensional effective action, we

obtain by the usual Feynman diagram techniques a contribution to the correlation function

of the form

〈O1(x1) . . .ON (xN )〉 = λN

∫

(

N
∏

i=1

Ki(xi, x; ρ)

)

h5/4(ρ)
√

g d4xdρ, (2.2)

where g is the five dimensional metric appearing in (2.1) and the factor h5/4 comes from the

determinant of the T 1,1 metric. We have absorbed some normalization factors (including

the overall scale L) into the variation of the action with respect to the boundary values of

the fields.

A five dimensional interaction vertex of this form would arise from an interaction

between N scalar fields in ten dimensions (with φi the KK modes of these scalar fields).

However, there are no such interactions in the 10d supergravity (SUGRA) action. All the

interactions in the 10d action involve two derivatives. Namely, in 10d they look like a

3There are also some p-form fields turned on in the background, which will not play any role in our

computations.
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product of two derivatives of 10d fields times a product of other fields. When we reduce to

5d, we can get non-derivative interactions of the type described above from ten-dimensional

interactions with the derivatives in the angular (T 1,1) directions; however, we then get an

additional factor of h−1/2(ρ) in the interaction vertex, coming from the metric in the angular

coordinates. Thus, the non-derivative interactions in the 5d SUGRA action which actually

exist take the form λNh−1/2(ρ)φ1 · · ·φN , and their contribution to correlation functions

takes the form

〈O1(x1) . . .ON (xN )〉 = λN

∫

(

N
∏

i=1

Ki(xi, x; ρ)

)

h3/4(ρ)
√

g d4xdρ. (2.3)

Next, using
√

g = ρ−5h−3/4, (2.4)

and Fourier transforming both sides of (2.3), we find that the momentum space correlation

functions may be written using the momentum space BtB propagators K̂i (using transla-

tional and rotational symmetry, which implies that the BtB propagators only depend on

the absolute value of their momentum) in the form

〈Ô1(~k1) · · · ÔN (~kN )〉 = δ(

N
∑

i=1

~ki)

∫ N
∏

i=1

K̂i(|~ki|; ρ)ρ−5dρ, (2.5)

where Ôi(~ki) is the Fourier transform of Oi(xi). The large k behavior can then be extracted

from this. We concentrate in this paper on non-derivative interactions in five dimensions.

Derivative interactions in the five dimensional effective action can be treated similarly (they

give expressions similar to (2.5) but with ρ-derivatives of some of the propagators or with

additional factors of ki) and do not result in any qualitatively new physics.

The expression (2.5) is IR divergent as ρ → 0 (this corresponds to a UV divergence

in the field theory) and must be renormalized. To regulate the theory, we put a cutoff at

some small (close to the boundary) radial coordinate ρUV , and define a regularized bulk-

to-boundary propagator corresponding to a source at ρUV instead of at the boundary. In

addition, the integral over the ρ coordinate in (2.5) extends from ρUV to infinity. Even-

tually, we need to take the ρUV → 0 limit. Generically, the integral (2.5) diverges as ρUV

goes to zero. However, we will show that all the divergent terms are analytic in (some of)

the momenta, so they are contact terms in position space.

In the usual AdS/CFT correspondence, one can consistently subtract these divergences

using holographic renormalization, by adding appropriate counter-terms to the action. The

final result for N -point functions is given by the non-analytic terms (in k) in the above

expressions. These terms are non-divergent as ρUV → 0 (if we are careful to take the

ρUV → 0 limit only at the very end of the calculation). We will use precisely the same

regularization and renormalization method in the cascading background. We will find that

this procedure leads to finite results for the N -point correlation functions, which are given

by the non-analytic terms in (2.5) in the ρUV → 0 limit.

– 5 –
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3. Bulk-to-boundary propagators and two-point functions

In this section we compute the BtB propagator in the Klebanov-Tseytlin background [2]

which is needed for the computation of correlation functions. We specialize to the case of a

scalar field in five dimensions, coming from a KK reduction of some type IIB supergravity

field on the T 1,1. We expect the generalization of our results to fields of higher spin to

be straightforward. We will find it more convenient to work in momentum space rather

than in position space. Since holographic correlation functions are usually computed in

position space, we start in §3.1 by reviewing the computation of the momentum space BtB

propagator in AdS space. This turns out to be useful because of the similarity between the

KT and AdS backgrounds. In §3.2 we compute the BtB propagator in the KT background,

and in §3.3 we use this for the computation of two-point functions.

3.1 The AdS bulk-to-boundary propagator

We would like to find the BtB propagator for a scalar field of mass m moving in the AdS5

background. This background is given by setting h = 1 in (2.1), in which case the scale L

becomes the radius of curvature (note that both x and ρ have units of length). We assume

that this scalar arises as some KK mode on T 1,1 with the mass coming from the Laplacian

in the T 1,1 directions. Plugging a solution with momentum ki in the xi directions into the

equation of motion ( +m2)φ = 0, we find the equation

ρ2(ρ−2φ)′′ + ρ(ρ−2φ)′ − (4 + m2L2 + k2ρ2)(ρ−2φ) = 0. (3.1)

Here primes denote derivatives with respect to ρ, and k ≡ |~k|.
Equation (3.1) is invariant under rescaling ρ → αρ, k → k/α, so the non-trivial features

of the solution will be at values of ρ of order 1/k. Now, suppose that we solve the equation

of motion in a space which is only asymptotically AdS, with significant differences from AdS

occurring at ρ > ρ0 (where ρ0 is the scale where IR effects become important). We expect

that the solution to (3.1) will be a good approximation to the solution we are interested

in as long as k À 1/ρ0. The corrections to this solution will be a power series in 1/kρ0, so

our results will be valid at large enough momentum in any asymptotically AdS space.

To solve (3.1), we define ψ ≡ ρ−2φ and switch to dimensionless variables R = ρ/ρs

and Y = kρs, where ρs is some arbitrary scale which we introduce for convenience (it will,

of course, drop out of all physical results). In these variables the equation of motion takes

the form

R2ψ′′(R) + Rψ′(R) − (ν2 + Y 2R2)ψ(R) = 0, (3.2)

where ν2 = 4+m2L2 is related to the dimension ∆ of the dual operator through ∆ = ν+2.

We restrict to ν > 0 such that we are strictly above the Breitenlohner-Freedman bound

for scalar fields in AdS space.

One method to solve the equation (3.2) is by an expansion at small R. In the small

R limit there are two asymptotic solutions to the equation of motion, ψ ∼ R±ν . One can

then expand the solution as a power series in R and in ln(R) around R ∼ 0. We find it

– 6 –
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convenient to write the two linearly independent solutions as

ψν(R) = Rν
∞

∑

n=0

κ̃ν,n(Y R)n (3.3)

and

ψ−ν(R) = R−ν
∞

∑

n=0

κ̃−ν,n(Y R)n (3.4)

for non-integer ν. For integer ν the second solution, equation (3.4), is replaced by

ψ−ν(R) = R−ν
2ν−1
∑

n=0

κ̃−ν,n(Y R)n + (−1)ν+1 ln (R)ψν(R). (3.5)

Before we impose any boundary conditions, the general solution to the equations of

motion is of the form

φ = Cν(R
2ψ−ν(R) + ανR

2ψν(R)), (3.6)

where Cν and αν are arbitrary constants. The BtB propagator K(Y,R) is defined to

be the solution with boundary conditions such that it is finite in the interior, and such

that it equals ρ2−ν
UV at the UV boundary ρ = ρUV (this is the Fourier transform of the

position-space boundary condition K(x0, x; ρ) → ρ2−ν
UV δ(x − x0)). Cν is easily determined

by the UV boundary condition: Cν = ρ2−ν
UV (R2

UV ψ−ν(RUV ) + ανR
2
UV ψν(RUV ))−1, with

RUV ≡ ρUV /ρs. On the other hand, αν is determined by the boundary condition in the

interior of AdS. To find it, one needs some handle on the asymptotic behavior of the

solutions ψ±ν(R) at large R, which is not evident from the series expansions we wrote

above which are useful only when RY ¿ 1.

Fortunately, equation (3.2) is a Bessel equation and has been thoroughly studied. The

solution which is smooth as R → ∞ is given by a modified Bessel function of the second

kind,

K̂(Y,R) = ρ2−ν
UV

R2Kν(RY )

R2
UV Kν(RUV Y )

. (3.7)

This leads to 4

αν =

{

−Y 2ν ν non-integer,

(−1)ν+1Y 2ν ln
(

1
2Y

)

ν integer.
(3.8)

For later convenience, we give here the coefficients of the small R expansion of the

modified Bessel function. We will find it useful to write Kν with a somewhat non-standard

normalization. We write

Kν(y) = y−ν

(ν−1
∑

n=0

κ2n,0y
2n +

∞
∑

n=ν

1
∑

m=0

κ2n,my2n lnm(y)

)

(3.9)

4Note that the overall power of Y is obvious from dimensional analysis, as we know that the scale ρs

should not appear in the solution, but this does not determine the coefficient.
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ν integer n < ν κ2n,0 = (−1)nΓ(ν−n)
22nΓ(n+1)Γ(ν)

n ≥ ν κ2n,1 = (−1)ν+1

22n−1Γ(ν)Γ(n−ν+1)Γ(n+1)

κ2n,0 = (−1)ν(ψ(n−ν+1)+ψ(n+1))
22nΓ(n−ν+1)Γ(n+1)Γ(ν)

− ln(2)κ2n,1

ν non-integer κ2n,0 = (−1)nΓ(ν−n)
22nΓ(n+1)Γ(ν)

κ2ν+2n,0 = − Γ(1−ν)
22n+2νΓ(n+1)Γ(n+ν+1)

Table 1: Coefficients of the modified Bessel function of the second kind.

for integer ν, and

Kν(y) = y−ν
∞
∑

n=0

κ2n,0y
2n + yν

∞
∑

n=0

κ2ν+2n,0y
2n (3.10)

for non-integer ν. We choose κ0,0 = 1. The other coefficients are given in table 1. Note

that these κ’s are different from the κ̃’s in equations (3.3) and (3.4).

3.2 The KT bulk-to-boundary propagator

Next we wish to solve for the BtB propagator in the KT background (2.1), for a scalar

field arising as a KK mode on T 1,1. We will use the same notation as in (3.2), where now

we can choose ρs = 1/Λ to be a typical IR scale in the cascading geometry. The equation

of motion that we find, again writing the solution as K̂(R) = R2ψ(R), is

R2ψ′′ + Rψ′ − (ν2 + Y 2R2 h(R))ψ = 0, (3.11)

where h(R) ≡ a′− b ln(Rρs/ρ0) = a− b ln(R) (with a ≡ a′− b ln(ρs/ρ0)). It will sometimes

be convenient to choose the scale ρs such that a = 0. Note that for KK modes, whose mass

comes from the Laplacian of some field on T 1,1, the factors of h in (2.1) conspire such that

ν appears in the equation in exactly the same way as in AdS space. Our analysis is an

extension of the specialized analysis of the m2 = 0 case done in [21, 22].

Of course, since the background (2.1) is singular it is not really meaningful to solve

the equation of motion in it. We are really interested in the solutions to the equations of

motion in a regular space which asymptotes to (2.1), such as the backgrounds found in [3]

or in [28 – 30]. As in the AdS case, we expect (and we can verify this based on our results)

that at large momentum k, the dominant contributions to correlation functions will come

from small values of ρ of order 1/k and that they will be independent of the IR (large

ρ) resolution of the KT background. Thus, we will be interested in computing the large

k limit of the BtB propagator and of the correlation functions, which is universal to all

asymptotically KT backgrounds. The details of the IR resolution at a scale ρ0 will affect

corrections to the results of order 1/kρ0.

As in the AdS case, we start by finding a small R expansion for the solution to (3.11),

which we will denote by K(I). For non-integer values of ν, we write the solution as a sum

ψ(R) ∼ ψν(R) + ψ−ν(R) of two linearly independent series expansions,

ψ−ν(R) = R−ν
∞
∑

n=0
m≤n

p2n,mR2n lnm(R), ψν(R) = Rν
∞

∑

n=0
m≤n

p2n+2ν,mR2n lnm(R). (3.12)

– 8 –
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ν integer 1 ≤ n < ν p2n,n = (bY 2)nΓ(ν−n)
22nΓ(n+1)Γ(ν)

p0,0

n = ν p2ν,ν+1 = − (bY 2)ν

22ν−1Γ(ν)Γ(ν+2)
p0,0

n > ν p2n,n+1 = (−1)n+ν+1(bY 2)n

22n−1(ν+1)Γ(ν)Γ(n−ν+1)Γ(n+1) p0,0

n = ν + s p2ν+2s,s
∼= (−bY 2)sΓ(ν+1)

22sΓ(s+1)Γ(s+ν+1)
p2ν,0

ν non-integer n ≥ 1 p2n,n = (bY 2)nΓ(ν−n)
22nΓ(n+1)Γ(ν)

p0,0

n ≥ 1 p2ν+2n,n = (−bY 2)nΓ(1+ν)
22nΓ(n+1)Γ(n+1+ν)

p2ν,0

Table 2: Leading coefficients in the expansions (3.12) and (3.13). See (A.13)–(A.17) for integer

ν, and (A.6)–(A.8) for non-integer ν. The expression for the integer ν, n = ν + s case includes only

the dependence of p2ν+2s,s on p2ν,0 and does not include its dependence on p0,0.

For integer values of ν it is simpler to write the two independent solutions in a single series

ψ(R) = R−ν

{ν−1
∑

n=0

n
∑

m=0

p2n,mR2n lnm(R) +

∞
∑

n=ν

n+1
∑

m=0

p2n,mR2n lnm(R)

}

. (3.13)

Plugging these ansatze into the equation of motion (3.11), one obtains a recursive relation

for the coefficients p2n,m which is written and solved in appendix A. One finds that, both

for integer and for non-integer ν, two of the coefficients are undetermined. One can choose

these to be p0,0 and p2ν,0. This behavior is analogous to the AdS case (see equations (3.3)

- (3.5)), where we denoted the undetermined constants by Cν and αν . The coefficients of

the leading power of ln(R), appearing at each order in the expansion of the solution in

powers of R, are summarized in table 2.

To find the BtB propagator we need to determine the two integration constants. One

of the constants is determined from the UV boundary condition which we choose to be the

same as in AdS,

K̂(I)(RUV ) = R2ψ(R)

∣

∣

∣

∣

R=RUV

= ρ2−ν
UV , (3.14)

while the other one is fixed by requiring that the propagator is non-singular everywhere in

the interior. To find the latter coefficient, we need some handle on the asymptotic behavior

of the solutions as ρ becomes very large. This cannot be obtained from the perturbative

expansion we have given here, as this expansion is valid only in the region (which we call

region I) where

Y 2R2 ln(R) ¿ 1. (3.15)

In order to find the correct integration constants we will use the method of Krasnitz [21, 22],

which is to solve the equations of motion in a region which allows for an evaluation of the

asymptotic value of the field and also has some overlap with region I (3.15).

Consider the following approximation:

h(R) = a − b ln

(

RY

Y

)

= a + b ln(Y )

(

1 − ln(RY )

ln(Y )

)

= hY

(

1 − b ln(RY )

hY

)

, (3.16)
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where we defined hY ≡ h
(

1
Y

)

= a + b ln(Y ). We would like to solve the equation of

motion (3.11) in a region where one has h(R) ' hY . We require

|b ln(RY )| ¿ hY , (3.17)

which for large momentum, Y À 1, means

| ln(RY )| ¿ ln(Y ). (3.18)

In this region (which we call region II) we may approximate the equation of motion (3.11)

as

R2ψ′′ + Rψ′ − (ν2 + R2Y 2hY )ψ = 0 (3.19)

which is simply a Bessel equation. This Bessel equation has two independent solutions.

One solution is finite when its argument is large and the other solution diverges. Thus, if

this equation was valid at large R we would have chosen the solution

K̂(II) = BR2 Kν(RY
√

hY ) (3.20)

with some undetermined constant B. Of course, at large R we do not really trust this

equation since we are no longer in the region (3.18). However, as discussed above, we

expect that at large momentum the dominant contributions to the correlation functions

will come from regions with RY which is not very large, and it should not matter what

the solution (or the background) looks like at large R. So, we will choose the specific

solution (3.20) in region II, assuming that even if we also include the other solution with

some coefficient (which will be present for generic IR resolutions of the background) it will

not change the leading large momentum behavior.

Notice that for Y À 1 there is an overlap between region I (3.15) and region II (3.18).

Indeed, if for large Y we look at values of R scaling as

R ∼ 1

Y lnγ(Y )
, γ >

1

2
, (3.21)

we are simultaneously in both regions. We would like to exploit this overlap between

regions I and II to determine the coefficients {p0,0, p2ν,0, B} by matching K(I) and K(II)

in the overlap region. We will treat the cases of non-integer and integer ν separately.

3.2.1 Non-integer ν

From the UV boundary condition (3.14) we have (defining a normalized integration con-

stant Cν)

p0,0 ≡ ρ2−ν
s Cν = ρ2−ν

s (1 + O(R2
UV ln(RUV ))). (3.22)

Next, comparing the coefficients of terms going as R2n−ν (for integer n ≥ 0) in the expan-

sion (3.12) in region I with the expansion of the Bessel function in region II, in the overlap

– 10 –
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region (3.21), we find

R2n−ν Bκ2n,0Y
2n−νh

n− ν
2

Y 'R2n−ν
n

∑

m=0

p2n,m lnm(R)

=R2n−ν
n

∑

m=0

p2n,m(ln(RY ) − ln(Y ))m

=R2n−ν

(

p2n,n(−1)n lnn(Y ) + O(ln(RY ) lnn−1(Y ))

)

,

(3.23)

where in the bottom line we used (3.18). Since we can use the scaling (3.21), we find

B =
p2n,n

κ2n,0
(−1)nY ν−2nh

ν
2
−n

Y lnn(Y ) ×
(

1 + O
(

ln(ln(Y ))

ln(Y )

))

=p0,0

(

Y
√

hY

)ν
×

(

1 + O
(

ln(ln(Y ))

ln(Y )

))

.

(3.24)

Note that this result is independent of n (which is a consistency check for the validity of

both expansions). Similarly, comparing the coefficients of terms going as R2n+ν gives

R2n+ν Bκ2ν+2n,0Y
2n+νh

n+ ν
2

Y 'R2n+ν
n

∑

m=0

p2n+2ν,m lnm(R)

=R2n+ν
n

∑

m=0

p2n+2ν,m(ln(RY ) − ln(Y ))m

=R2n+ν

(

p2n+2ν,n(−1)n lnn(Y ) + O(ln(RY ) lnn−1(Y ))

)

,

(3.25)

leading to

B =
p2n+2ν,n

κ2ν+2n,0
(−1)nY −ν−2nh

− ν
2
−n

Y lnn(Y ) ×
(

1 + O
(

ln(ln(Y ))

ln(Y )

))

= − p2ν,0
22νΓ(1 + ν)

Γ(1 − ν)

(

Y
√

hY

)−ν
×

(

1 + O
(

ln(ln(Y ))

ln(Y )

)) (3.26)

(which, again, is independent of n). Given (3.24) this determines

p2ν,0 = −p0,0
Γ(1 − ν)

22νΓ(1 + ν)

(

Y
√

hY

)2ν
×

(

1 + O
(

ln(ln(Y ))

ln(Y )

))

. (3.27)

To summarize, for non-integer ν, matching K(I) and K(II) in the overlap region de-

termines (to leading order at large Y , with corrections of order ln(ln(Y ))/ ln(Y ))

p0,0 =ρ2−ν
s Cν , Cν = 1 + O(R2

UV ln(RUV )),

p2ν,0 = − ρ2−ν
s

Γ(1 − ν)

22νΓ(1 + ν)

(

Y
√

hY

)2ν
Cν ,

B =ρ2−ν
s

(

Y
√

hY

)ν
Cν .

(3.28)
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3.2.2 Integer ν

Now we tackle the slightly more difficult case of integer ν. Again, from (3.14) we have

p0,0 = ρ2−ν
s Cν , Cν = 1 + O(R2

UV ln(RUV )). (3.29)

The comparison in the overlap region of terms of order R2n−ν for ν > n ≥ 0 is exactly the

same as before. This leads to

B = p0,0

(

Y
√

hY

)ν
×

(

1 + O
(

ln(ln(Y ))

ln(Y )

))

. (3.30)

For n = ν we find

Rν B Y νh
ν
2

Y

1
∑

m=0

κ2ν,m lnm
(

RY
√

hY

)

' Rν
ν+1
∑

m=0

p2ν,m lnm(R) (3.31)

or

Rν B Y νh
ν
2

Y

(

κ2ν,0 +
1

2
κ2ν,1 ln(hY ) + κ2ν,1 ln (RY )

)

' Rν
ν+1
∑

m=0

p2ν,m(ln(RY ) − ln(Y ))m.

(3.32)

The coefficients p2ν,m with m > 0 scale as Y 2νp0,0. Therefore, in the large Y limit, contri-

butions with 0 < m < ν + 1 are all smaller than the contribution coming from p2ν,ν+1. On

the other hand, p2ν,0 is an independent coefficient so that apriori we do not know if it is

smaller. Thus, to leading order in ln(RY )/ ln(Y ), the right-hand side of (3.32) takes the

form

Rν

(

p2ν,0 + (−1)ν+1p2ν,ν+1 lnν+1(Y )

)

×
(

1 + O
(

ln(RY )

ln(Y )

))

. (3.33)

Comparing the leading order expansion of the left-hand side of (3.32) with (3.33), we find

B Y νh
ν
2
Y κ2ν,0 = p2ν,0 + (−1)ν+1p2ν,ν+1 lnν+1(Y ), (3.34)

where we have neglected terms of order ln(ln(Y ))/ ln(Y ). This implies (using our re-

sult (3.30) for B) that to leading order in 1/ ln(Y )

p2ν,0 = (−1)νp2ν,ν+1 lnν+1(Y ), (3.35)

with p2ν,ν+1 given in terms of p0,0 in table 2.

At this stage all the free parameters p0,0, p2ν,0 and B are determined. Thus, for each

value of n > ν, matching the leading coefficients at order R2n−ν in the overlap region must

be automatic. We explicitly verified that this is indeed the case.

To summarize, for integer ν a matching of K(I) and K(II) in the overlap region deter-

mines (to leading order in ln(ln(Y ))/ ln(Y ))

p0,0 =ρ2−ν
s Cν , Cν = 1 + O(R2

UV ln(RUV )),

p2ν,0 =(−1)νp2ν,ν+1 lnν+1(Y )Cν ,

B =ρ2−ν
s

(

Y
√

hY

)ν
Cν .

(3.36)
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3.2.3 Explicit examples

We give here some explicit examples of KT BtB propagators (with a = 0).

For the massless ν = 2 case our result is identical to the result of Krasnitz [21, 22]:

K̂(Y,R) = C2

[

1 +
1

4
bY 2R2 ln(R) + b2Y 4R4

(

− 1

128
ln(R) +

1

64
ln2(R) − 1

48
ln3(R)

− 1

48
ln3(Y ) + O(ln2(Y ) ln(ln(Y )))

)

+ O(R6)

]

. (3.37)

For ν = 5/2 we find

K̂(Y,R) = C5/2ρ
−1/2

[

1 + bY 2R2

(

− 1

36
+

1

6
ln(R)

)

+ b2Y 4R4

(

1

16
+

1

18
ln(R)

+
1

24
ln2(R)

)

− 1

45
Y 5R5

(

h
5/2
Y + O(ln2(Y ) ln(ln(Y )))

)

+ O(R6)

]

. (3.38)

For the tachyonic ν = 1 case we find

K̂(Y,R) =C1ρ

[

1 + bY 2R2

(

1

4
ln(R) − 1

4
ln2(R) +

1

4
ln2(Y ) + O(ln(Y ) ln(ln(Y )))

)

+ O(R4)

]

.

(3.39)

3.3 Two-point functions

In any holographic background the two-point function may be extracted from the UV

behavior of the BtB propagator. Two-point functions in AdS were studied in [18, 19],

and two-point functions in KT were studied (for m2 = 0) in [21, 22]. One subtlety that

was emphasized in [32] is that in order to get correct Ward identities one should use a

prescription for evaluating the correlator in which the UV cutoff ρUV is taken to zero only

at the very end of the calculation. This is the prescription we will follow. Alternatively,

one may use holographic renormalization [33 – 42, 23] to calculate the two-point functions.

Adding local counterterms does not change the result.

For completeness, we will first describe how to obtain the two-point functions in AdS

and then move on to the KT case. The reader may refer to [32, 18] for details. Consider a

scalar field in Euclidean AdS space (with a cutoff at ρ = ρUV ) with the action

S =
1

2

∫

dd+1x
√

g(gµν∂µφ∂νφ + m2φ2). (3.40)

Evaluating the action (in momentum space) on a solution φ̂ to the equations of motion

gives

S = lim
ρ→ρUV

1

2

∫

1

ρ3
δ(~k + ~q)φ̂(~k)∂ρφ̂(~q)d4kd4q. (3.41)

The two-point function of the operator dual to φ is given by the second derivative of the

action with respect to sources

〈Ôν(~k)Ôν(~q)〉 = δ(~k + ~q)
1

ρ3
UV

ρ2−ν
UV lim

ρ→ρUV

∂ρK̂ν(~q, ρ). (3.42)
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This expression may be readily evaluated. We start with integer ν. Here, we have

(see (3.9))

∂ρK̂ν(~k) = ρ−1
s ∂RK̂ν = ρ1−ν

s Cν

(

ν−1
∑

n=0

κ2n,0Y
2n(2n − ν + 2)R2n−ν+1

+

∞
∑

n=ν

1
∑

m=0

κ2n+2ν,mY 2n+2ν((ν + 2n + 2)R2n+ν+1(ln(RY ))m + mR2n+ν+1)

)

. (3.43)

So, the correlation function is given by the RUV → 0 limit of

δ(~k + ~q)ρ−2ν
s R

−(ν+1)
UV ×

lim
R→RUV

{

(

ν−1
∑

n=0

κ2n,0(RUV Y )2n +
∞
∑

n=0

1
∑

m=0

κ2n+2ν,m(RUV Y )2n+2ν(ln(RUV Y ))m

)−1

×
(ν−1

∑

n=0

κ2n,0Y
2n(2n − ν + 2)R2n−ν+1

+

∞
∑

n=0

1
∑

m=0

κ2n+2ν,mY 2n+2ν
(

(ν + 2n + 2)R2n+ν+1(ln(RY ))m + mR2n+ν+1
)

)}

(3.44)

where the denominator comes from the normalization Cν . This expression diverges as

ρUV → 0, but it is easy to verify that all divergent terms are analytic in k. Analyticity of

these divergences implies that they are unphysical contact terms in position space which

may be subtracted (by adding appropriate counter-terms). The finite non-analytic terms

are given by

〈Ôν(~k)Ôν(~q)〉 = δ(~k + ~q)
(−1)ν+1

22ν−2Γ(ν)2
k2ν ln(kρs). (3.45)

Despite appearances, this is independent of ρs, since the ρs-dependent term is analytic.

Note that, as stated earlier, if we had first taken the ρUV → 0 limit, the numerical coefficient

we would have obtained would have been different (and wrong).

The analysis for non-integer ν is very similar, the only difference is that instead of (3.9)

we have the expansion (3.10). Since non-analyticity only comes from the second sum, the

results are similar,

〈Ôν(~k)Ôν(~q)〉 = δ(~k + ~q)k2ν(2ν)κ2ν,0 = δ(~k + ~q)
−Γ(1 − ν)

22ν−1Γ(ν)
k2ν . (3.46)

To obtain the position space correlation function, we need to Fourier transform the

above expressions. We find that for both integer and non-integer ν we have [18, 32]

〈Oν(~x1)Oν(~x2)〉 =
2ν2(1 + ν)

π2

1

|~x1 − ~x2|4+2ν
. (3.47)

The analysis of the two-point functions in the cascading (KT) background closely

follows the AdS case and generalizes the results of [21] to massive fields. We still have

〈Ôν(~k)Ôν(~q)〉 = δ(~k + ~q) lim
ρ→ρUV

1

ρ3
K̂ν(~k)∂ρK̂ν(~q). (3.48)
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The leading non-analytic contribution to this expression is similar to that in the AdS case

because of the form of the power law expansion of the propagator (see (3.12) and (3.13)).

We find

〈Ôν(~k)Ôν(~q)〉 = δ(~k + ~q)ρ−2−ν
s (2ν)p2ν,0. (3.49)

For integer ν this gives us

〈Ôν(~k)Ôν(~q)〉 = δ(~k + ~q)
(−1)ν+1bν

22ν−2(ν + 1)Γ(ν)2
k2ν(ln(Y ))ν+1, (3.50)

while for non-integer ν we find

〈Ôν(~k)Ôν(~q)〉 = −δ(~k + ~q)
Γ(1 − ν)

22ν−1Γ(ν)
k2ν(b ln(Y ))ν . (3.51)

By Fourier transforming we may obtain the leading behavior of the short distance

correlation function. We find

〈Oν(~x1)Oν(~x2)〉 =
2ν2(1 + ν)

π2

(b ln(ρs/|~x1 − ~x2|))ν

|~x1 − ~x2|4+2ν
=

2(−b)νν2(1 + ν)

π2

(ln(Λ|~x1 − ~x2|))ν

|~x1 − ~x2|4+2ν

(3.52)

for both integer and non-integer ν. Curiously, in the KT case we find that the momentum

space two-point functions are not smooth in ν, while in AdS the ν → n limit, with n ∈ Z,

commutes with the Fourier transform. In both cases the position space answers are smooth

in ν. Similarly, the full momentum space KT BtB propagator does not seem to have a

smooth limit as ν approaches an integer, while its Fourier transform does (at least for the

leading terms which we computed).

On general grounds, we expect the correlation functions of the cascading gauge theories

to reflect the variation in the rank of the gauge group with the momentum. Since in

the large K limit of an SU(K) gauge theory, there is a standard normalization of the

operators (which is the one coming from the dual string theory) in which all correlation

functions scale as K2, we expect to have a normalization in the KT case for which all

correlation functions scale as N2
eff ∼ b2 ln2(k/Λ) (more precisely, since some factors of

ln(k) disappear when we go to position space for integer ν, we expect the position space

answers to scale as b2 ln2(Λ|~xi − ~xj|)). The two-point functions we found above have this

scaling for the massless ν = 2 case, but not for other cases. However, we can always rescale

our operators (by a momentum-dependent factor) so that the 2-point functions will all scale

as b2 ln2(Λ|~xi − ~xj|) as expected. Therefore, we will define normalized operators Õν(~k) ≡
Ôν(~k)/(b ln(k/Λ))(ν−2)/2 which obey the expected scaling for their 2-point functions. In

the following section we will compute general correlation functions of these normalized

operators and see that they scale as N2
eff . Another natural scaling which is often used

is to divide the previous operators by Neff , so that the two-point functions do not scale

while higher N -point functions scale as N2−N
eff . The operators obeying this scaling are

Õ′
ν(~k) ≡ Ôν(~k)/(b ln(k/Λ))ν/2.
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4. Higher N-point functions

In this section we compute the large-momentum behavior of N -point functions in asymp-

totically cascading backgrounds. We will focus on the specific contribution to N -point

functions coming from a single non-derivative vertex which couples the N fields. We ex-

pect that the qualitative features that we find will be present also in other contributions

to the N -point functions. We begin by performing our analysis in asymptotically AdS

backgrounds, both because as far as we know this computation has not been performed

before in momentum space, and because many features of the AdS computation carry over

in a straightforward manner to the cascading case.

In general, the expression for the correlators (both in the AdS case and in the cascading

case) is quite complicated, involving an integral of Bessel functions which we do not know

how to compute exactly. However, we will be able to prove that the results for the non-

analytic terms in the correlators are always finite (independent of the UV cutoff), so that

the theory is well-defined. In some special cases we will be able to write down a closed-

form expression for the leading large momentum behavior of the correlators. Separating our

computation into regions I and II as we did in the discussion of the KT BtB propagator,

we will show that in some cases (both in AdS and in KT), the region I contribution is

dominant at large momentum, and can be explicitly computed.

4.1 Tree level N-point functions in AdS

4.1.1 General expression for the N-point functions

We are interested in computing the contribution to an N -point function of operators dual

to scalar fields, coming from a tree-level diagram involving a single interaction vertex (with

coefficient λN ) coupling these scalar fields together. The general rules of computation in

AdS space [18, 19] imply that the result in momentum space is given by

AN = 〈Ô1(~k1) . . . ÔN (~kN )〉 = δ
(

∑

~ki

)

λN

∫

∏

i

K̂i(ki; ρ)ρ−5dρ. (4.1)

As discussed above, the same expression should be true at high momentum even in spaces

which are only asymptotically AdS.

In AdS space we have an explicit result, described above, for the BtB propagator

K̂ at any value of ρ. However, since we are planning to generalize our results to the KT

background, it is natural to separate the contributions to (4.1) as coming from region I and

region II, where in region I we use the perturbative expansion of the BtB propagator (3.3)-

(3.5), which is useful for RY ¿ 1, and in region II we use the precise expression involving

the Bessel function. These regions are analogous to the two regions we used in our KT

computation. In principle, in AdS we could extend region II all the way down to R = RUV .

However, it will be instructive to choose a separation point Rt obeying RtY ¿ 1 such that

the power series expression can be used at R < Rt and the Bessel function expression can

be used at R > Rt. In the KT case we will be forced to use such a procedure.
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In region I of AdS we have seen that the BtB propagator is given by

K̂(I)
ν = ρ2−ν

s CνR
−ν+2

(

ν−1
∑

n=0

κ2n,0(RY )2n +

∞
∑

n=0

1
∑

m=0

κ2n+2ν,m (RY )2n+2ν lnm(RY )

)

(4.2)

for integer ν, and by

K̂(I)
ν = ρ2−ν

s CνY
νR2

(

(RY )−ν
∞
∑

n=0

κ2n,0(RY )2n + (RY )ν
∞

∑

n=0

κ2ν+2n,0(RY )2n

)

(4.3)

for non-integer ν. The coefficients κ are given in table 1. In order to unify our expressions

for integer and non-integer values of ν, we will write both cases as

K̂(I)
ν = ρ2−ν

s CνR
−ν+2

∑

n,m,s

κ2n+2νs,m(RY )2n+2νs lnm(RY ). (4.4)

In the sum, n, m and s take the following values. s ∈ {0, 1} distinguishes the first and

second terms in (4.2) and (4.3). If ν is an integer and s = 1 then m ∈ {0, 1}. Otherwise,

m = 0. Finally, n goes from zero to infinity except when ν is an integer and s = 0, in

which case it goes from zero to ν − 1.

Ignoring for now the momentum conserving δ-function, the tree level N -point function

may be written as

AN =λNρ−4
s

∫ ∞

RUV

dR R−5
N
∏

i=1

K̂i(Yi, R) = A(I)
N + A(II)

N

=λNρ−4
s

∫ Rt

RUV

dR R−5
N
∏

i=1

K̂
(I)
i (Yi, R) + λNρ−4

s

∫ ∞

Rt

dR R−5
N
∏

i=1

K̂
(II)
i (Yi, R).

(4.5)

We do not know how to perform the integral over the Bessel functions in region II. However,

in region I we can perform the integral explicitly:

A(I)
N =ρ−4

s λN

N
∏

i=1

Cνi

∑

{ni,mi,si}

( N
∏

i=1

ρ2−νi
s Y 2ni+2siνi

i κ2ni+2siνi,mi

)

×
∫ Rt

RUV

dR

R
Rn̄

N
∏

j=1

lnmj (RYj)

(4.6)

where the summation is over {ni,mi, si} in the range described above, and we define

n̄ ≡ −4 + 2N −
N

∑

i=1

νi + 2

N
∑

i=1

νisi + 2

N
∑

i=1

ni. (4.7)

In order to evaluate the integral in (4.6), we arrange the indices such that all the mi’s

for which mi 6= 0 appear first, at i = 1, . . . ,m where m ≡ ∑N
i=1 mi. We note that m
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counts the number of ln(Yi) contributions from integer ν terms. For n̄ 6= 0 we find that

the integral (4.6) is given by

∫ m
∏

i=1

ln(YiR)Rn̄ dR

R
= Rn̄

m
∑

k=0

(−1)k

n̄k+1

m
∑

j1,...,jk

j1 6=...6=jk





∏

i6=j1,...,jk

ln(YiR)



 , (4.8)

where the second sum on the right is given by one when k = 0. Thus, the contribution of

these terms is given by:

A(I)
N = ρ−4

s λN

N
∏

i=1

Cνi

∑

{ni,mi,si},n̄ 6=0

( N
∏

i=1

ρ2−νi
s Y 2ni+2siνi

i κ2ni+2siνi,mi

)

× Rn̄
m

∑

k=0

(−1)k

n̄k+1

m
∑

j1,...,jk

j1 6=...6=jk





∏

i6=j1,...,jk

ln(YiR)





∣

∣

∣

∣

∣

Rt

RUV

. (4.9)

For the special n̄ = 0 case, we find

∫ m
∏

i=1

ln(YiR)
dR

R
=

m
∑

t=0

(ln(µR))t+1

(t + 1)!
∂(t)P (− ln(µ)), (4.10)

where we have defined P (x) ≡ ∏m
i=1(ln(Yi) + x), ∂(t) is the t’th derivative, and µ is an

arbitrary integration constant which should be independent of the momenta Yi. Therefore,

the n̄ = 0 terms contribute

A(I)
N = ρ−4

s λN

N
∏

i=1

Cνi

∑

{ni,mi,si},n̄=0

( N
∏

i=1

ρ2−νi
s Y 2ni+2siνi

i κ2ni+2siνi,mi

)

×
m

∑

t=0

(ln(µR))t+1

(t + 1)!
∂(t)P (− ln(µ))

∣

∣

∣

∣

∣

Rt

RUV

. (4.11)

4.1.2 Locality of UV divergences and the RUV → 0 limit

Some of the terms in the integrals we wrote over region I (the ones with n̄ ≤ 0) are divergent

as RUV → 0. The correlation functions on AdS that we have been computing (which can

be, for example, those of the Klebanov-Witten supersymmetric gauge theory [26]) should

be renormalizable. Therefore, the divergences in (4.6) arising from the RUV → 0 limit must

be non-analytic in at most (N−2) different momenta5. This means that the divergences do

not contribute to the correlation functions in position space at generic separated points and

that they can be canceled by local counter-terms. In our expressions for the correlation

function in region I, non-analytic contributions in ki (or in Yi) appear only when the

corresponding si = 1 (such contributions are non-analytic due to the non-integer powers of

5All such divergences can then be subtracted by introducing local counter-terms of the type needed to

renormalize all {2, . . . , N − 1}-point correlation functions.
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k2
i in the non-integer ν case, and due to the ln(Yi) in the integer ν case). Thus, we should

require that (4.6) converges at the lower limit of integration whenever at least (N − 1) of

the si are equal to one. The most stringent condition comes from the case when a single

sr = 0; we require that the corresponding value of n̄ must be positive (for any choice of ni)

−4 + 2N +
N

∑

i=1

νi − 2νr > 0, νr ∈ {ν1, . . . , νN}. (4.12)

Introducing

νmax ≡ max{ν1, . . . , νN}, νtot ≡
N

∑

i=1

νi, (4.13)

we conclude that for the theory to be renormalizable, λN must vanish whenever

−4 + 2N + νtot − 2νmax ≤ 0. (4.14)

We can rewrite this condition in terms of the dimensions ∆i = νi + 2 of the dual gauge

theory operators. In this language we find that λN must vanish if

1

2

N
∑

i=1

∆i ≤ max{∆1, . . . ∆N}, or if for some j ∆j ≥
N

∑

i=1,i6=j

∆i. (4.15)

This is, indeed, a well-known condition for renormalizability also from the position-space

analysis of AdS correlators [43]. The case with an equality in (4.15) is called the extremal

correlator case, and the bulk couplings λN must vanish in this case as well.

The condition described above holds in all known AdS backgrounds. In particular,

it holds for the KK modes in the Klebanov-Witten background. We will see in the next

subsection that precisely when this condition holds, the correlators of the same operators

in the cascading KT gauge theory are also finite. In this sense the renormalizability of the

KT N -point correlation functions is linked to the renormalizability of the corresponding

correlators in the conformal Klebanov-Witten gauge theory.

We also note that the Cνi
’s will not contribute to N -point functions with N ≥ 3, which

implies that one may take the ρUV → 0 limit before evaluating the correlator (as shown

in [32]). This follows from the fact that
(

∏N
i=1 Cνi

)

= 1 + O(R2
UV ) so that a non-trivial

contribution from the Cνi
may survive in the RUV → 0 limit only if there is a non-analytic

term going as a negative power of RUV . As we have just shown, such divergent terms

do not exist. Therefore, when extracting the non-analytic contributions to the N -point

functions with N ≥ 3 we may set
∏

i Cνi
= 1.

4.1.3 Analysis of leading terms

Evaluating the contribution to the correlation function (4.5) from region II is technically

difficult. However, we will show that there are some N -point correlators which are domi-

nated by the n̄ = 0 terms in the series expansion in region I. We will evaluate these terms

explicitly below. For more general correlators the best expression we have is (4.5).
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We are interested in computing the correlation functions in the large momentum limit.

For simplicity, we assume that all momenta ki are of the same order. This allows us to

introduce a typical momentum scale k∗ = Y∗/ρs with

Y? =
1

N

N
∑

i=1

Yi. (4.16)

When we perform an expansion of our expressions at large Y?, we can ignore terms of order

ln(Yi/Yj) or ln(Yi/Y∗) compared to terms of order ln(Y∗).

In the large momentum limit, with Yi ∼ Yj, we choose the separation, Rt, between

regions I and II to be

Rt =
1

Y∗ lnγ(Y∗)
, γ > 0, (4.17)

such that RtYi ¿ 1 (namely, Rt is in both regions I and II). We note that (4.16) and (4.17)

imply that ln(Y∗) and ln(Rt) are non-analytic in all momenta. There is some freedom in

choosing Rt and Y?. However, in the large momentum expansion, the final expressions we

find will depend on the choice of Rt only through subleading terms. The specific choice

above for Rt is motivated by the fact that in some exact computations (such as a four-point

correlation function which we will present below) it correctly gives some of the subleading

terms as well.

We would like to find correlation functions whose major contribution to non-analytic

terms at high momenta is from region I, where we can evaluate the integrals explicitly. We

note that at leading order in Y∗, the region II contribution is equal to

AII = ρ2N−4−νtot
s λN

∫ ∞

Rt

R2N−4 (Y∗)
νtot

N
∏

i=1

Kνi
(RY∗)

dR

R
(4.18)

(up to a constant depending on the ratios of the momenta, which we assume to be finite in

the large momentum limit). Consider the case νtot > 2(N −2) 6. Since RtY∗ is small in the

limit we are interested in, and the small R behavior of the integrand goes as R2N−4−νtot−1,

the above integral is divergent as the lower bound goes to zero. Hence, we conclude that

it is dominated by the contribution from the lower bound, which is of order

AII = ρ2N−4−νtot
s λN

∫

Rt

dR

R
R2N−4−νtot ∼ ρ2N−4−νtot

s λNR2N−4−νtot

t . (4.19)

We would like to compare this expression with the non-analytic contributions from region

I, which we computed in § 4.1.1. We start with the n̄ > 0 contributions. Approximating

Yi ∼ Y? in (4.9) and requiring that it dominate over the region II contribution gives us the

condition
(γ ln(ln(Y?)))

m

(ln(Y?))γ(2
P

νisi+2
P

ni)
=

(γ ln(ln(Y?)))
m

(ln(Y?))γ(n̄+νtot−2(N−2))
À 1. (4.20)

Obviously this does not hold in the large momentum limit for any γ > 0.

6If νtot ≤ 2(N − 2) then it can be shown that region II will always dominate over region I, and so, we

are not interested in this case.
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Therefore, only terms with n̄ = 0 in region I (4.11) may dominate. We saw that the

contributions from the lower bound of the integral are always analytic and thus, unin-

teresting. However, in the particular case of n̄ = 0, the contribution to (4.11) from the

upper region of integration is non-analytic for any values of si, since it always contains

a ln(Rt) ∼ − ln(Y∗) term. Recall that we are interested in the leading non-analytic con-

tribution at large momentum. For integer νi, every non-vanishing value of si produces a

power of ln(Yi) (from the term with mi = 1), so we would like to have as many non-zero

values of the si corresponding to integer νi’s as possible. From the analysis of the previous

subsubsection, we know that there can be at most (N − 2) si’s which do not vanish (for

n̄ = 0).

We find that the condition for the contribution from the upper bound of integration

of region I to dominate over the region II result is

Y 4−2N+νtot
?

m
∑

t=0

(

ln(
µ

Y? lnγ(Y?)
)

)t+1

∂(t)
m
∏

i=1

(ln(Yi) + x)
∣

∣

x=− ln(µ)
À 1

(Y? lnγ(Y?))2N−4−νtot
,

(4.21)

or

m
∑

t=0

(

ln(
µ

Y? lnγ(Y?)
)

)t+1

∂(t)
m
∏

i=1

(ln(Yi) + x)
∣

∣

x=− ln(µ)
À (ln(Y?))

γ(4−2N+νtot). (4.22)

This is satisfied at large momenta provided that

m + 1 > γ(4 − 2N + νtot). (4.23)

We can always choose a small enough γ (which must also satisfy (4.17), γ > 0) so that this

inequality is satisfied.

To summarize, in order for an N -point function to be dominated for large momentum

by the region I integral, we need that two constraints be satisfied. One is a constraint on

γ which will make the contribution of the n̄ = 0 term in region I dominate over region

II (4.23). It may always be satisfied. The other constraint is that a n̄ = 0 term should

exist; there should exist a choice of si and ni such that

−4 + 2N + νtot + 2(
∑

siνi − νtot) + 2ntot = 0, (4.24)

with ntot ≡
∑

i ni, recalling that we must also have

−4 + 2N + νtot − 2νmax > 0. (4.25)

Such a choice does not exist for all correlation functions that we want to compute (for

example for generic non-integer values of νi). However, in many cases such a choice does

exist, and for any N one can find some large enough νi such that this constraint is satisfied.

4.1.4 Examples of correlation functions

We may now evaluate explicitly the correlation functions which are dominated by the

n̄ = 0 term in region I. These are correlation functions which satisfy (4.25), and which
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have contributions which satisfy (4.24). In this case we find that, to leading order in the

momenta,

〈Ô1(~k1) · · · ÔN (~kN )〉 = δ(
∑

~ki)λN

∑

{ni,si∈S}

(

N
∏

i=1

κ2ni+2siνi,mi

)(

N
∏

i=1

k2ni+2siνi

i

)

×
m

∑

t=0

(− ln(k?/Λ))t+1

(t + 1)!
∂(t)

m
∏

i=1
si=1

(ln(ki/Λ) + x)
∣

∣

∣

x=0
, (4.26)

where S is the set of all si’s and ni’s which satisfy (4.24), and we take mi = 1 whenever

νi is integer and si = 1. The constants κ appear in table 1. We have used our freedom of

choosing µ = 1/(Λρs) to rewrite the logarithms using an arbitrary mass scale Λ. The choice

of µ does not affect any non-analytic terms in the results since there are no µ-dependent

terms which are non-analytic. When all the νi are non-integer7 (and also in other cases

with all mi = 0), the second line is simply given by − ln(k∗/Λ).

As an example consider 3-point correlation functions. Here we can have at most a

single si 6= 0. These correlators will have a leading term which we can compute if there

exist integer ni’s such that

2

3
∑

i=1

ni =

3
∑

i=1

νi − 2νj − 2 (4.27)

when sj = 1 for some j, or

2
3

∑

i=1

ni =
3

∑

i=1

νi − 2 (4.28)

when all si = 0. In both cases we must also have

0 < 2 +

3
∑

i=1

νi − 2νmax. (4.29)

Defining mj = 1 if νj is an integer, and zero otherwise, we find from the (4.27) terms

〈Ô1(~k1) . . . Ô3(~k3)〉a = δ(~k1 + ~k2 + ~k3)λN

3
∑

j=1

∑

{ni}∈Sj

×
(

3
∏

i=1

k2ni

i

)

k
2νj

j (− ln(k?/Λ))

(

ln(kj/Λ) − 1

2
(ln(k?/Λ))

)mj

(

3
∏

i=1

(−1)niΓ(νi − ni)

22niΓ(ni + 1)Γ(νi)

)

(

(−1)νj2

Γ(1 − νj)Γ(νj)

)mj
( −Γ(nj − νj + 1)

22νjΓ(nj + νj + 1)

)

, (4.30)

where Sj are all the ni’s which satisfy (4.27). Note that for integer νj the expression (4.30)

contains a ratio of diverging Gamma functions. This should be understood as the finite

7Note that the Klebanov-Witten background, unlike the AdS5 × S5 background, has KK modes with

non-integer values of the νi.
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limit of the ratio when νj approaches the corresponding integer. From the (4.28) terms we

find a contribution of

〈Ô1(~k1) · · · Ô3(~k3)〉b = δ(~k1 +~k2 +~k3)λN

∑

{ni}∈S

(

3
∏

i=1

(−1)niΓ(νi − ni)

22niΓ(ni + 1)Γ(νi)
k2ni

i

)

(

− ln(
k?

Λ
)

)

,

(4.31)

where here S are all the combinations of {ni} which satisfy (4.28). The correlation function

is generally given by

〈Ô1(~k1) · · · Ô3(~k3)〉 = 〈Ô1(~k1) · · · Ô3(~k3)〉a + 〈Ô1(~k1) · · · Ô3(~k3)〉b. (4.32)

The expression (4.32) for the 3-point correlation function should be understood as the

leading non-analytic contribution for fixed values of νi, in the limit ki

Λ → ∞, k∗

Λ → ∞. For

specific choices8 of νi’s, the first contribution in (4.32), i.e. (4.30), dominates. In this case

the contribution (4.31) is subdominant, and it is inconsistent to keep it along with (4.30).

It is only when (4.30) and (4.31) are of the same order (in the large momentum limit) that

the 3-point correlation function is given by a sum (4.32).

As a specific example, the three point massless (νi = 2) correlator in momentum space

is dominated at large momentum by the terms with sj = 1 (j = 1, 2, 3),

〈Ô2(~k1) . . . Ô2(~k3)〉 = δ(~k1 + ~k2 + ~k3)
λN

16

3
∑

j=1

k4
j

(

ln(k?/Λ) ln(kj/Λ) − 1

2
(ln(k?/Λ))2

)

.

(4.33)

As a test of our methods we can look at the four-point function of operators with

indices ν1 = ν2 = 5/2 and ν3 = ν4 = 1/2. In the half-integer ν case, modified Bessel

functions of the second kind are exponents multiplied by polynomials, and so the exact

momentum-space correlation function (4.5) can be evaluated explicitly. From this explicit

computation one finds that the leading non-contact terms are given (up to the overall delta

function) by
1

6

(

k2
1 + k2

2 − 3(k3 + k4)
2
)

ln ((k1 + k2 + k3 + k4)/Λ) . (4.34)

Our equation (4.26) gives

1

6

(

k2
1 + k2

2 − 3(k3 + k4)
2
)

ln(k?/Λ), (4.35)

so that the leading large momentum non-analytic terms are indeed identical.

Finally, we would like to emphasize that the general result (4.32) is obtained in the
ki

Λ → ∞, k∗

Λ → ∞ limit with νj kept fixed. However, one can not use (4.32) to compute

the 3-point correlation functions arising in the limit as some νi approach integer values. In

fact, in the limit νi → ν̂i for integer values of ν̂i satisfying (4.27), one has

lim
νi→ν̂i

〈Ôν1
(~k1) · · · Ôν3

(~k3)〉 6= 〈Ôν̂1
(~k1) · · · Ôν̂3

(~k3)〉. (4.36)

8This occurs in particular when (4.27) can be solved for integer values of νi’s.
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The reason for the apparent discrepancy is that the limit of the short distance behavior

of the correlation functions does not commute with the limit in which dimensions of some

operators approach integer values. At the technical level, if the limit νi → ν̂i is taken before

the ki

Λ → ∞ limit, certain n̄ 6= 0 terms in (4.6) can dominate and produce a leading non-

analytic behavior. As we explicitly demonstrate in appendix B, the contribution of these

n̄ 6= 0 terms in the limit νi → ν̂i precisely reproduces the dominant n̄ = 0 contribution

of the Ôν̂i
(~ki) correlators in the large ki limit. Thus, the correlation functions do have a

smooth νi → integer limit, as expected from the fact that the position space propagators

in AdS have a smooth limit. However, this smooth limit is not evident in our expressions

above.

4.2 Tree level N-point functions in asymptotically cascading geometries

4.2.1 General expression for the N-point functions

We would like to repeat the same analysis in asymptotically cascading geometries. The

bulk-to-boundary propagator in region I is given by

K̂(I)
ν = R−ν+2

(

ν−1
∑

n=0

n
∑

m=0

p2n,mR2n lnm(R) +
∞

∑

n=0

n+ν+1
∑

m=0

p2n+2ν,m R2n+2ν lnm(R)

)

(4.37)

for integer ν, and by

K̂(I)
ν = R−ν+2

(

∞
∑

n=0

n
∑

m=0

p2n,mR2n lnm(R) +

∞
∑

n=0

n
∑

m=0

p2ν+2n,mR2n+2ν lnm(R)

)

(4.38)

for non-integer ν. The relevant coefficients, p, are given in table 2. Again, we can write

both cases as

K̂(I)
ν = R−ν+2

∑

n,m,s

p2n+2νs,mR2n+2νs lnm(R), (4.39)

where the only difference from the AdS case is in the range of m (and in the precise

coefficients).

Up to the momentum conservation δ-function, the tree level N -point function arising

from an N -point vertex in the bulk is given by

AN =λNρ−4
s

∫ ∞

RUV

dR R−5
N
∏

i=1

K̂i(Yi, R) = A(I)
N + A(II)

N

=λNρ−4
s

∫ Rt

RUV

dR R−5
N
∏

i=1

K̂
(I)
i (Yi, R) + λNρ−4

s

∫ ∞

Rt

dR R−5
N
∏

i=1

K̂
(II)
i (Yi, R),

(4.40)

where Rt is chosen to be in the overlap between regions I and II, described in (3.21). We

are taking the background to be the KT background all the way to R → ∞ even though

this is singular, since we expect (and will verify) that the leading contributions at large
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momentum come from small values of R, for which the large R behavior of the background

is irrelevant. In region I we have

A(I)
N = ρ−4

s λN

∑

{ni,mi,si}

( N
∏

i=1

p2ni+2siνi,mi

)∫ Rt

RUV

dR

R
Rn̄

N
∏

j=1

lnmj (R), (4.41)

where we again define

n̄ ≡ −4 + 2N −
N

∑

i=1

νi + 2

N
∑

i=1

νisi + 2

N
∑

i=1

ni. (4.42)

Using (3.36) and (3.28), we note the following properties of the coefficients pa,b which give

the leading large Y contributions. For non-integer ν

p2n,n = Cνρ
2−ν
s (−b)nY 2nκ2n,0, (4.43)

p2ν+2n,n = Cνρ
2−ν
s Y 2n+2ν(−b)n(hY )νκ2ν+2n,0, (4.44)

while for integer ν

p2n,n = Cνρ
2−ν
s (−b)nY 2nκ2n,0, n < ν (4.45)

p2n,n+1 = Cνρ
2−ν
s (−b)nY 2n(ν + 1)−1κ2n,1, n > ν (4.46)

p2ν+2s,s = Cνρ
2−ν
s (−1)s(bY 2)ν+s(ln(Y ))ν+1(ν + 1)−1κ2ν+2s,1 (4.47)

= (−1)ν(ln(Y ))ν+1p2ν+2s,ν+s+1. (4.48)

Now, we wish to evaluate the leading contributions to (4.41) at large momentum, which

come from the terms with the most logarithmic contributions. Recalling that 0 ≤ mi ≤
ni+σi(νi+1) (where σi ≡ si for νi integer and zero otherwise), leading logarithms in (4.41)

always come from factors related to the coefficients (4.43)-(4.48). Thus we can rewrite the

leading contributions to (4.41) as

A(I)
N ∼ ρ−4

s λN

∑

{ni,si}

×
(

N
∏

i=1

Cνi
ρ2−νi

s (−b)ni+νiσiY 2ni+2siνi

i (b ln(Yi))
(si−σi)νi(νi + 1)−σiκ2ni+2siνi,σi

)

×
∫ Rt

RUV

dR

R
Rn̄(ln(R))ntot

N
∏

i=1

(

(−1)νi(ln(Yi))
νi+1 + (ln(R))νi+1

)σi . (4.49)

To match with the earlier notation, we define m ≡ ∑

σi, and as in the AdS case we

rearrange the indices so that the first m indices specify the σi 6= 0 contributions. We need

to evaluate the integral

∫

Rn̄(ln(R))ntot

m
∏

i=1

(

(−1)νi(ln(Yi))
νi+1 + (ln(R))νi+1

) dR

R
. (4.50)
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We start with the n̄ 6= 0 case. It will be convenient to use the following identity:

(

(−1)ν(ln(Y ))ν+1 + (ln(R))ν+1
)

=
ν

∑

t=0

(−1)t

(

ν + 1

t

)

(ln(Y R))ν+1−t(ln(Y ))t. (4.51)

The integral we wish to evaluate can be written as

∫

Rn̄(ln(R))ntot

m
∏

i=1

(

νi
∑

t=0

(−1)t

(

νi + 1

t

)

(ln(YiR))νi+1−t(ln(Yi))
t

)

dR

R
. (4.52)

In order to evaluate the leading term in (4.52), we only need to keep track of the terms

with the largest power of (ln(Yi)) (the t = νi term). To see this, note that from (4.8) we

find
∫

Rn̄(ln(R))ntot(ln(Y1R)) . . . (ln(YnR))
dR

R

= Rn̄(ln(R))ntot

n
∑

k=0

(−1)k
1

n̄k+1

n
∑

j1...jk

j1 6=...6=jk





∏

i6=j1,...jk

ln(YiR)





+ O
(

Rn̄(ln(R))ntot−1
∏

ln(YiR)
)

. (4.53)

Thus,

∫

Rn̄(ln(R))ntot

m
∏

i=1

(

(−1)νi(ln(Yi))
νi+1 + (ln(R))νi+1

) dR

R

= Rn̄(ln(R))ntot

(

m
∏

i=1

(−1)νi(νi + 1)(ln(Yi))
νi

)

m
∑

k=0

(−1)k

n̄k+1

m
∑

j1...jk

j1 6=...6=jk





∏

i6=j1,...jk

ln(YiR)





+ O
(

Rn̄(ln(R))ntot−1
m
∏

i=1

(ln(Yi))
νi

∏

ln(YiR)

)

. (4.54)

This gives us a leading contribution of the form

A(I)
N ∼ ρ−4

s λN

N
∏

i=1

Cνi

∑

{ni,si}

(

N
∏

i=1

ρ2−νi
s Y 2ni+2siνi

i (−b ln(R))ni(b ln(Yi))
siνiκ2ni+2siνi,σi

)

× Rn̄
m

∑

k=0

(−1)k

n̄k+1

m
∑

j1...jk

j1 6=...6=jk





∏

i6=j1,...jk

ln(YiR)





∣

∣

∣

∣

∣

Rt

RUV

(4.55)

which differs from its AdS counterpart (4.9)

A(I)
N = ρ−4

s λN

N
∏

i=1

Cνi

∑

{ni,mi,si}

( N
∏

i=1

ρ2−νi
s Y 2ni+2siνi

i κ2ni+2siνi,mi

)

× Rn̄
m

∑

k=0

(−1)k

n̄k+1

m
∑

j1,...,jk

j1 6=...6=jk





∏

i6=j1,...,jk

ln(YiR)





∣

∣

∣

∣

∣

Rt

RUV

(4.56)
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only by some powers of logs (as we found in the two-point functions).

The analysis of the n̄ = 0 contributions in KT is again very similar to that of AdS.

Using (4.10) we find that the n̄ = 0 term contributes

A(I)
N ∼ ρ−4

s λN

∑

{ni,si},n̄=0

ntot+
Pm

i=1
(νi+1)

∑

t=0

(ln(µR))t+1

(t + 1)!
∂(t)P (− ln(µ))

∣

∣

∣

∣

∣

Rt

RUV

×
(

N
∏

i=1

Cνi
ρ2−νi

s (−b)ni+νiσiY 2ni+2siνi

i (b ln(Yi))
(si−σi)νi(νi + 1)−σiκ2ni+2siνi,σi

)

, (4.57)

where here

P (x) = xntot

m
∏

i=1

(

(−1)νi(ln(Yi))
νi+1 + xνi+1

)

. (4.58)

The AdS counterpart of this expression is given in (4.11).

4.2.2 The RUV → 0 limit

We will now show that if the νi satisfy (4.25), which is the case whenever the λN do not

vanish (since we are using the same couplings as we had in the AdS case and we assume that

the AdS case is renormalizable), then the divergences in (4.41) coming from the RUV → 0

limit are non-analytic in at most (N − 2) momenta, so that they correspond to contact

terms. Indeed, the first time a term non-analytic in (N −1) momenta appears as RUV → 0

is when ni = 0 for all i, and a single sr = 0. In this case

n̄ = −4 + 2N +

N
∑

i=1

νi − 2νr ≥ −4 + 2N + νtot − 2νmax. (4.59)

The right-hand side of (4.59) must be strictly positive for λN 6= 0, so such a term is

independent of RUV in the RUV → 0 limit. Thus, whenever λN is non-vanishing, divergent

terms in (4.41) as RUV → 0 are non-analytic in at most (N−2) momenta. This implies that

a cascading version of a conformal field theory is holographically renormalizable whenever

the original conformal field theory is. By the same arguments as for the AdS case, we also

find that the
∏

Cνi
do not contribute to non-analytic terms, and we will ignore them from

here on.

4.2.3 Analysis of leading terms

As in the AdS case, we wish to consider N -point correlators which are dominated by the

region I contribution A(I)
N .

Again, we introduce a typical momentum k∗ = Y∗/ρs with

Y? ≡ 1

N

N
∑

i=1

Yi, (4.60)

and choose the separation between regions I and II to be at

Rt =
1

Y∗ lnγ(Y∗)
, γ >

1

2
, (4.61)
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so that Rt is in the overlap of regions I and II for all momenta, provided they are not vastly

different, Yi ∼ Yj. By a computation similar to the AdS case, we find that the region II

contribution is dominated by9

AII ∼ λNρ2N−4−νtot
s R2N−4−νtot

t . (4.62)

Comparing this to the region I contribution with n̄ > 0, we find that region I dominates

whenever

(γ ln(ln(Y?)))
m

ln(Y?)(2γ−1)(
P

siνi+
P

ni)
À 1 (4.63)

which is always false, meaning that only terms with n̄ = 0 may contribute if region I is to

dominate over region II. Since µ is independent of the momenta, we find that the condition

for the n̄ = 0 term in region I to dominate over region II is

ntot +
∑

i

siνi + m̄ + 1 > γ(4 + νtot − 2N), (4.64)

implying (using n̄ = 2N − 4 − νtot + 2
∑

νisi + 2ntot = 0)

m + 1 >

(

γ − 1

2

)

(4 + νtot − 2N). (4.65)

Again, this may always be satisfied for an appropriate choice of γ > 1
2 . The constraints we

find for the existence of the n̄ = 0 term are thus the same as those for the AdS case, (4.24)

and (4.25).

For the special case of the three-point function with equal integer ν, we find that the

leading term has m = 1, so that (4.65) reduces to

1

2

3ν + 2

3ν − 2
> γ, (4.66)

which is consistent with γ > 1
2 .

4.2.4 Leading expressions for correlation functions

As in AdS, we may evaluate explicitly the correlation functions which are dominated by

the n̄ = 0 term in region I. These are correlation functions for which there exists a choice

of ni and si such that

−4 + 2N + νtot + 2(
∑

i

siνi − νtot) + 2ntot = 0. (4.67)

9As in AdS, we consider νtot > 2(N −2), as this is the only case where region I will turn out to dominate

over region II.
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In this case, we find that to leading order in the large momentum limit

〈Ô1(~k1) · · · ÔN (~kN )〉 ∼ δ(
∑

~ki)λN

∑

{ni,si∈S}

(

N
∏

i=1

κ2ni+2siνi,σi

)

×
(

N
∏

i=1

k2ni+2siνi

i (b ln(ki/Λ))(si−σi)νi(−b)ni+νiσi(νi + 1)−σi

)

×
ntot+

Pm
i=1

(νi+1)
∑

t=0

(− ln(k?/Λ))t+1

(t + 1)!
∂(t)

{

xntot

m
∏

i=1

(

(−1)νi(ln(ki/Λ))νi+1 + xνi+1
)

}

∣

∣

∣

∣

∣

x=0

,

(4.68)

where we have set µ = 1 in order to write the solutions using the natural scale Λ = 1/ρs.

Notice that any apparent µ-dependence in expressions of the form (4.68) is only through

analytic terms which disappear in position space.

To simplify this expression, we observe that if t < ntot the second sum will vanish.

Thus, (4.68) can be rewritten as

〈Ô1(~k1) · · · ÔN (~kN )〉 ∼ δ(
∑

~ki)λN

∑

{ni,si∈S}

(

N
∏

i=1

κ2ni+2siνi,σi

)

×
(

N
∏

i=1

k2ni+2siνi

i bsiνi(ln(ki/Λ))(si−σi)νi

)

(b ln(k?/Λ))ntot ntot!

×

Pm
i=1

(νi+1)
∑

t=0

(− ln(k?/Λ))t+1

(ntot + t + 1)!
∂(t)

{ m
∏

i=1

(

(ln(ki/Λ))νi+1 + (−1)νixνi+1

νi + 1

)}

∣

∣

∣

∣

∣

x=0

. (4.69)

For three-point functions we again find that there are two types of contributions. Those

from the (4.27) term are given by

〈Ô1(~k1) · · · Ô3(~k3)〉a = δ(~k1 + ~k2 + ~k3)λN

3
∑

j=1

∑

{ni}∈Sj

×
(

3
∏

i=1

(bk2
i ln(k?/Λ))ni

)

k
2νj

j bνj ntot!

(− ln(k?/Λ)(ln(kj/Λ))νj+1

(ntot + 1)!(νj + 1)
+

(ln(k?/Λ))νj+2νj!

(ntot + νj + 2)!

)

×
(

3
∏

i=1

(−1)niΓ(νi − ni)

22niΓ(ni + 1)Γ(νi)

)

(

(−1)νj2

Γ(1 − νj)Γ(νj)

)σj
( −Γ(nj − νj + 1)

22νjΓ(nj + νj + 1)

)

, (4.70)

where we use the same notation as in (4.30). The other contributions come from the (4.28)

term

〈Ô1(~k1) · · · Ô3(~k3)〉b = δ(~k1 + ~k2 + ~k3)λN

×
3

∑

j=1

∑

{ni}∈Sj

(

3
∏

i=1

(bk2
i ln(k?/Λ))ni

)

(− ln(k?/Λ))

ntot + 1

(

3
∏

i=1

(−1)niΓ(νi − ni)

22niΓ(ni + 1)Γ(νi)

)

. (4.71)
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The complete three-point function is given by

〈Ô1(~k1) · · · Ô3(~k3)〉 = 〈Ô1(~k1) · · · Ô3(~k3)〉a + 〈Ô1(~k1) · · · Ô3(~k3)〉b (4.72)

and should be understood in the same sense as the corresponding AdS three-point corre-

lation function (4.32).

As a specific example, the three-point function for the massless νi = 2 modes is given

by

〈Ô2(~k1) · · · Ô2(~k3)〉 = δ(~k1 + ~k2 + ~k3)λN×
b2

48

3
∑

j=1

k4
j

(

(ln(k?/Λ))(ln(kj/Λ))3 − 1

4
(ln(k?/Λ))4

)

. (4.73)

As we did in the AdS case, we also consider the specific four-point function with ν1 = ν2 =

5/2 and ν3 = ν4 = 1/2. We find that the dominant contribution is of the form

b

12

(

k2
1(ln(k1/Λ)) + k2

2(ln(k2/Λ)) − 3k2
3(ln(k3/Λ)) − 3k2

4(ln(k4/Λ))

− 12k3(ln(k3/Λ))1/2k4(ln(k4/Λ))1/2

)

ln(k?/Λ) (4.74)

which may be compared to the exact AdS result (4.34).

Unlike the AdS correlation functions which have a smooth νi → integer limit, corre-

lation functions in asymptotically cascading geometries do not have such a smooth limit

in momentum space. This can be traced to the fact that unlike the AdS case, BtB prop-

agators in asymptotically cascading geometries do not have a smooth νi → integer limit

in momentum space. However, since the BtB propagator in position space does have a

smooth limit (at least for the leading terms which we computed), we believe that higher

order N -point correlation functions in KT are smooth in ν in position space as well.

Finally, note that the overall powers of momentum and of logarithms of momentum

that we find in the KT correlators are always given (at leading order) by replacing k →
k
√

b ln(k/Λ) in the AdS correlators, although the precise coefficients are different (as are

the precise momenta appearing in the logs, but this is something that we are not sensitive

to in our leading order computations). This allows us to easily verify that the normalized

correlation functions indeed depend on Neff as we expect. In AdS, dimensional arguments

imply that a correlator 〈Ôν1
· · · ÔνN

〉 scales as kνtot−2N+4, up to the overall delta function,

and sometimes up to logarithmic factors which disappear when we transform to position

space. This means that when we normalize the correlation function by dividing by the

norms (the square roots of the two-point functions) of the operators, the correlator scales

as k4−2N . According to the relation we found above between the KT and AdS results,

this implies that the normalized correlator in KT, namely the correlator of the operators

which we denoted by Õ′
ν in §3, scales as k4−2N (b ln(k/Λ))2−N (up to the delta function

of the momenta, and sometimes up to additional logs which are the same in KT and
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in AdS and which disappear when we Fourier transform to position space). We expect

normalized correlation functions in a large Neff SU(Neff ) gauge theory to scale as N2−N
eff ,

so the result we find is consistent with the identification Neff (k) ∝ b ln(k/Λ). Of course,

this is not surprising; in standard gravity computations in AdS, the fact that all tree-level

correlators scale as N2 (in some normalization) comes from the fact that we can normalize

the gravity action such that N2 sits in front of the action. Similarly, in the KT case we

can normalize the action so that N2
eff (ρ) sits in front of the gravity action at the scale ρ,

leading to the dependence on Neff that we found.
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A. Coefficients in the expansion of the KT BtB propagator

We wish to find a perturbative solution for the BtB propagator of KK modes in the

asymptotically KT background (2.1). Up to integration constants and an overall power of

R2, the BtB propagator is given by the solution to (3.11),

R2ψ′′ + Rψ′ − (ν2 + Y 2R2 h(R))ψ = 0. (A.1)

We consider the case of ν > 0. The perturbative solution crucially depends on whether ν

is an integer or not. We treat these two cases separately.

A.1 Non-integer ν > 0

To find a perturbative solution, we write the series expansion of the field ψ as either

ψ(R) = R−ν
∞
∑

n=0
m≤n

p2n,mR2n lnm(R) (A.2)

or

ψ(R) = Rν
∞
∑

n=0
m≤n

p2n+2ν,mR2n lnm(R). (A.3)
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Plugging (A.2) into the equation of motion (A.1), we find

∑

p2n,mR2n−ν
(

(m − 1)m lnm−2(R) + 2m(2n − ν) lnm−1(R) + 4n(n − ν) lnm(R)+

R2Y 2(−a lnm(R) + b lnm+1(R))
)

= 0 (A.4)

which may be rewritten as

∞
∑

n=0

n
∑

m=0

p2n,m 4n(n − ν) R2n−ν lnm(R)

−
∞
∑

n=1

n−1
∑

m=0

p2(n−1),m Y 2a R2n−ν lnm(R)

+

∞
∑

n=1

n
∑

m=1

p2(n−1),m−1 Y 2b R2n−ν lnm(R)

+
∞
∑

n=1

n−1
∑

m=0

p2n,m+1 2(m + 1)(2n − ν) R2n−ν lnm(R)

+

∞
∑

n=2

n−2
∑

m=0

p2n,m+2 (m + 2)(m + 1) R2n−ν lnm(R) = 0.

(A.5)

We consider first the leading lnm(R) coefficients in the series expansion (A.2). From (A.5)

we find that p0,0 is arbitrary and

p2n,n =
(−bY 2)

4n(n − ν)
p2(n−1),n−1 =

(−bY 2)nΓ(1 − ν)

22nΓ(n + 1)Γ(n + 1 − ν)
p0,0, n ≥ 1. (A.6)

Additionally, for any n and n > m ≥ 0

p2n,m ∝ p2n,n ∝
(

bY 2
)n

p0,0. (A.7)

A similar analysis for (A.3) leads to arbitrary p2ν,0 and

p2n+2ν,n =
(−bY 2)

4n(n + ν)
p2(n−1)+2ν,n−1 =

(−bY 2)nΓ(1 + ν)

22nΓ(n + 1)Γ(n + 1 + ν)
p2ν,0, n ≥ 1 (A.8)

p2n+2ν,m ∝ p2n+2ν,n ∝
(

bY 2
)n

p2ν,0 (A.9)

for n > m ≥ 0.

A.2 Integer ν ≥ 1

To find a perturbative solution, we write the series expansion of the field ψ as

ψ(R) = R−ν

{ν−1
∑

n=0

n
∑

m=0

p2n,mR2n lnm(R) +

∞
∑

n=ν

n+1
∑

m=0

p2n,mR2n lnm(R)

}

. (A.10)

Plugging (A.10) into the equation of motion (A.1), we find

∑

p2n,mR2n−ν
(

(m − 1)m lnm−2(R) + 2m(2n − ν) lnm−1(R) + 4n(n − ν) lnm(R)+

R2Y 2(−a lnm(R) + b lnm+1(R))
)

= 0, (A.11)
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which may be rewritten as

ν−1
∑

n=0

n
∑

m=0

p2n,m 4n(n − ν) R2n−ν lnm(R) +
∞
∑

n=ν

n+1
∑

m=0

p2n,m 4n(n − ν) R2n−ν lnm(R)

+
ν

∑

n=1

n−1
∑

m=0

−p2(n−1),m Y 2a R2n−ν lnm(R) +
∞

∑

n=ν+1

n
∑

m=0

−p2(n−1),m Y 2a R2n−ν lnm(R)

+

ν
∑

n=1

n
∑

m=1

p2(n−1),m−1 Y 2b R2n−ν lnm(R) +

∞
∑

n=ν+1

n+1
∑

m=1

p2(n−1),m−1 Y 2b R2n−ν lnm(R)

+

ν−1
∑

n=1

n−1
∑

m=0

p2n,m+1 2(m + 1)(2n − ν) R2n−ν lnm(R)

+
∞

∑

n=ν

n
∑

m=0

p2n,m+1 2(m + 1)(2n − ν) R2n−ν lnm(R)

+

ν−1
∑

n=2

n−2
∑

m=0

p2n,m+2 (m + 2)(m + 1) R2n−ν lnm(R)

+

∞
∑

n=ν

n−1
∑

m=0

p2n,m+2 (m + 2)(m + 1) R2n−ν lnm(R) = 0.

(A.12)

From (A.12) we find that p0,0 and p2ν,0 are arbitrary and

For 1 ≤ n < ν

p2n,n =
(−bY 2)

4n(n − ν)
p2(n−1),n−1 =

(bY 2)nΓ(ν − n)

22nΓ(n + 1)Γ(ν)
p0,0, (A.13)

with

p2n,m ∝ p2n,n ∝
(

bY 2
)n

p0,0 (A.14)

for n > m ≥ 0.

For n = ν

p2ν,ν+1 =
(−bY 2)

2ν(ν + 1)
p2(ν−1),ν−1 =

−(bY 2)ν

22ν−1Γ(ν)Γ(ν + 2)
p0,0. (A.15)

For n > ν

p2n,n+1 =
(−bY 2)

4n(n − ν)
p2(n−1),n =

(−bY 2)n−νΓ(ν + 1)

22(n−ν)Γ(n − ν + 1)Γ(n + 1)
p2ν,ν+1

=
(−1)n−ν+1ν(bY 2)n

22n−1Γ(n + 1)Γ(ν + 2)Γ(n − ν + 1)
p0,0.

(A.16)

We also note from (A.12), that for a given s, the highest power of m for which an

Rν+2s lnm(R) term will have a coefficient depending on p2ν,0 is at m = s, in which case we

find

p2ν+2s,s = Cp0,0 +
(−bY 2)sΓ(ν + 1)

22sΓ(s + 1)Γ(s + ν + 1)
p2ν,0, (A.17)

where C is a constant which will not be important in our calculations.
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B. Correlation functions when some νi approach integers

In this section we consider AdS correlation functions with index νi = ν̂i + δ (for fixed

integers ν̂i), in the δ → 0 limit. We will show explicitly that this limit does not commute

with the large momentum limit. That is, there are terms in the correlation function which

are not dominant at large momentum when the νi’s are non-integer, but that do become

dominant if we first take the νi → ν̂i limit. Moreover, the leading non-analytic expression

we extract for integer-indexed correlation functions by this method agrees with our direct

method of calculation (4.26).

We will explicitly discuss a specific limit of three-point functions10. We consider a set

of integer ν̂i’s and n̂i’s such that

2
∑

i=1

n̂i =
3

∑

i=1

ν̂i − 2ν̂j − 2. (B.1)

Following (4.26) and (4.30), the leading non-analytic contribution to the correlation func-

tion corresponding to (B.1) takes the form

〈Ô1(~k1) · · · Ô3(~k3)〉a = λ3

3
∑

j=1

∑

{ni∈Sj}

(

3
∏

i=1

(bk2
i )

n̂i

)

(bk2
j )

ν̂j

× (− ln(k?/Λ))

(

ln(kj/Λ) − 1

2
(ln(k?/Λ))

)

(

3
∏

i=1

κ2n̂i,0

)

κ2n̂j+2ν̂j ,1

κ2n̂j ,0
. (B.2)

We will concentrate only on the contribution of the j’th element of the above sum.

Next, we consider a small deformation of ν̂j of the form

ν̂j → νj = ν̂j + δj , δj ¿ 1. (B.3)

We would like to compare the δj → 0 limit of such a correlation function to (B.2).

Clearly, (B.3) has no n̄ = 0 terms since it violates the condition (B.1). Therefore, re-

gion I does not dominate, and at finite δj one can not evaluate the leading contribution to

the correlation functions by our methods. To obtain the leading contribution to the (j’th

component of the) correlation function in the δj → 0 limit, we need to consider the n̄ ∝ δj

terms. These terms will dominate in the δj → 0 limit.

We find that there are two important n̄ ∝ δj terms. The first one is given by

n̄1 = −4 + 6 −
3

∑

i=1

ν̂i − δj + 2 (ν̂j + δj) + 2
3

∑

i=1

n̂i = δj, (B.4)

where n̄ is the overall power of R, defined in (4.7), and in the last equality we used (B.1).

The second term comes from the case where all the si’s are set to zero, but n̂j is replaced

by nj

n̂j → nj = n̂j + ν̂j (B.5)

10Other limits can be analyzed similarly and lead to the same conclusion.
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resulting in

n̄2 = −4 + 6 −
3

∑

i=1

ν̂i − δj + 2

(

3
∑

i=1

n̂i + ν̂j

)

= −δj . (B.6)

We will argue shortly that the other n̄ ∝ δj terms will be subdominant at large momentum.

The n̄1 term contributes (see (4.6))

A(I)
3,1 =

(

3
∏

i=1

(bk2
i )

n̂i

)

(bk2
j )

ν̂jρ
−δj
s Y

2δj

j

(

3
∏

i=1

κ2n̂i+2·0·ν̂i,0

)

κ2n̂j+2(ν̂j+δj),0

κ2n̂j+2·0·ν̂j ,0

(Rt)
δj

δj
, (B.7)

while the n̄2 term contributes

A(I)
3,2 =

(

3
∏

i=1

(bk2
i )

n̂i

)

(bk2
j )

ν̂jρ
−δj
s

(

3
∏

i=1

κ2n̂i+2·0·ν̂i,0

)

κ2(n̂j+ν̂j)+2·0·(ν̂j+δj),0

κ2n̂j+2·0·ν̂j ,0

(Rt)
−δj

(−δj)
. (B.8)

We first note that taking the δ → 0 limit results in

κ2n+2(ν̂+δ),0 → 1

2δ
κ2n+2ν̂,1 + O(1), (B.9)

κ2n,0 → − 1

2δ
κ2n+2ν̂,1 + O(1), ν̂ + δ < n. (B.10)

Therefore, the non-analytic contributions to A(I)
3,2 and A(I)

3,1 are of the form

A(I)
3,1 =

(

3
∏

i=1

(bk2
i )

n̂i

)

(bk2
j )

ν̂j

(

3
∏

i=1

κ2n̂i,0

)

κ2n̂j+2ν̂j ,1

2δj κ2n̂j ,0
(B.11)

× 1

δj

(

− ln(k?)δj +
1

2

(

−4 ln(kj) ln(k?) + ln2(k?)
)

δ2
j

)

+ O(δ0 ln(k∗), δ), (B.12)

A(I)
3,2 =

(

3
∏

i=1

(bk2
i )

n̂i

)

(bk2
j )

ν̂j

(

3
∏

i=1

κ2n̂i,0

)

−κ2n̂j+2ν̂j ,1

2δj κ2n̂j ,0
(B.13)

× −1

δj

(

ln(k?)δj +
1

2
ln2(k?)δ

2
j

)

+ O(δ0 ln(k∗), δ). (B.14)

One can now easily take the δj → 0 limit to obtain (B.2). From this analysis, it is clear

that the other n̄ ∝ δj terms will be of order δ−1
j , and so will only contribute to order ln(k?).

Similarly, it can be verified that the deformation (B.3) for a set of integers satisfying

2
∑

i=1

n̂i =

3
∑

i=1

ν̂i − 2 (B.15)

precisely reproduces in the δj → 0 limit the leading non-analytic contribution (4.31).
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